Regulating hippocampal hyperexcitability through GABAB Receptors

نویسندگان

  • Min Lang
  • Homeira Moradi‐Chameh
  • Tariq Zahid
  • Jonathan Gane
  • Chiping Wu
  • Taufik Valiante
  • Liang Zhang
چکیده

Abstract Disturbances of GABAergic inhibition are a major cause of epileptic seizures. GABA exerts its actions via ionotropic GABAA receptors and metabotropic G protein-coupled GABAB receptors. Malfunction of GABAA inhibition has long been recognized in seizure genesis but the role of GABAB receptors in controlling seizure activity is still not well understood. Here, we examined the anticonvulsive, or inhibitory effects, of GABAB receptors in a mouse model of hippocampal kindling as well as mouse hippocampal slices through the use of GS 39783, a positive allosteric GABAB receptor modulator, and CGP 55845, a selective GABAB receptor antagonist. When administered via intraperitoneal injections in kindled mice, GS 39783 (5 mg/kg) did not attenuate hippocampal EEG discharges, but did reduce aberrant hippocampal spikes, whereas CGP 55845 (10 mg/kg) prolonged hippocampal discharges and increased spike incidences. When examined in hippocampal slices, neither GS 39783 at 5 μmol/L nor the GABAB receptor agonist baclofen at 0.1 μmol/L alone significantly altered repetitive excitatory field potentials, but GS 39783 and baclofen together reversibly abolished these field potentials. In contrast, CGP 55845 at 1 μmol/L facilitated induction and incidence of these field potentials. In addition, CGP 55845 attenuated the paired pulse depression of CA3 population spikes and increased the frequency of EPSCs in individual CA3 pyramidal neurons. Collectively, these data suggest that GABABB receptors regulate hippocampal hyperexcitability by inhibiting CA3 glutamatergic synapses. We postulate that positive allosteric modulation of GABAB receptors may be effective in reducing seizure-related hyperexcitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-frequency Stimulation Decreases Hyperexcitability through Adenosine A1 Receptors in the Hippocampus of Kindled Rats

Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neur...

متن کامل

GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors.

Adult neurogenesis is tightly regulated through the interaction of neural stem/progenitor cells (NSCs) with their niche. Neurotransmitters, including GABA activation of GABAA receptor ion channels, are important niche signals. We show that adult mouse hippocampal NSCs and their progeny express metabotropic GABAB receptors. Pharmacological inhibition of GABAB receptors stimulated NSC proliferati...

متن کامل

NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1.

GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GABAB receptors are abundant on dendritic spines, where they dampen postsynaptic excitability and inhibit Ca2+ influx through NMDA receptors when activated by spillover of GABA from neighboring GABAergic terminals. Here, we show that an excitatory signaling cascade enables spines to ...

متن کامل

GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome.

KEY POINTS Cortico-hippocampal feed-forward circuits formed by the temporoammonic (TA) pathway exhibit a marked increase in excitation/inhibition ratio and abnormal spike modulation functions in Fmr1 knock-out (KO) mice. Inhibitory, but not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward circuit abnormalities in Fmr1 KO mice. GABA release is reduced in TA-associated i...

متن کامل

Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving Mice

GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the central nervous system. Pharmacological activation of GABAB receptors regulates neurotransmission and neuronal excitability at pre- and postsynaptic sites. Electrophysiological activation of GABAB receptors in brain slices generally requires strong stimulus intensities. This raises the ques...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014